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Abstract
Due to engineering limitations, the spatial encoding gradient fields in 
conventional magnetic resonance imaging cannot be perfectly linear and 
always contain higher-order, nonlinear components. If ignored during image 
reconstruction, gradient nonlinearity (GNL) manifests as image geometric 
distortion. Given an estimate of the GNL field, this distortion can be corrected 
to a degree proportional to the accuracy of the field estimate. The GNL 
of a gradient system is typically characterized using a spherical harmonic 
polynomial model with model coefficients obtained from electromagnetic 
simulation. Conventional whole-body gradient systems are symmetric in 
design; typically, only odd-order terms up to the 5th-order are required for 
GNL modeling. Recently, a high-performance, asymmetric gradient system 
was developed, which exhibits more complex GNL that requires higher-order 
terms including both odd- and even-orders for accurate modeling. This work 
characterizes the GNL of this system using an iterative calibration method 
and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging 
Initiative). The phantom was scanned at different locations inside the 26 cm 
diameter-spherical-volume of this gradient, and the positions of fiducials in 
the phantom were estimated. An iterative calibration procedure was utilized to 
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identify the model coefficients that minimize the mean-squared-error between 
the true fiducial positions and the positions estimated from images corrected 
using these coefficients. To examine the effect of higher-order and even-order 
terms, this calibration was performed using spherical harmonic polynomial of 
different orders up to the 10th-order including even- and odd-order terms, or 
odd-order only. The results showed that the model coefficients of this gradient 
can be successfully estimated. The residual root-mean-squared-error after 
correction using up to the 10th-order coefficients was reduced to 0.36 mm, 
yielding spatial accuracy comparable to conventional whole-body gradients. 
The even-order terms were necessary for accurate GNL modeling. In addition, 
the calibrated coefficients improved image geometric accuracy compared with 
the simulation-based coefficients.

Keywords: gradient nonlinearity, image geometric distortion, asymmetric 
gradient, head-only MRI system, compact 3T

(Some figures may appear in colour only in the online journal)

1. Introduction

Conventional magnetic resonance imaging (MRI) reconstruction methods based on direct fast 
Fourier transform implicitly assume that the spatial encoding gradient fields employed for 
MR signal formation and data acquisition are perfectly linear throughout the entire imaging 
volume (Glover and Pelc 1986). However, engineering limitations and physiological con-
straints such as the risk of peripheral nerve stimulation (PNS) dictate that the gradient fields 
are not perfectly linear and always contain higher-order nonlinear components (Glover and 
Pelc 1986, Harvey and Katznelson 1999, Lee et al 2015). In addition, for some emerging MR 
platforms allowing high system performance, gradient linearity may be intentionally sacri-
ficed in return for increased gradient amplitude and slew rate (Roemer 1993, Lee et al 2015, 
Tan et al 2016). If linear gradients are presumed during image reconstruction, the effects of 
gradient nonlinearity (GNL) will manifest as geometric distortion into the generated images 
(O’Donnell and Edelstein 1985, Glover and Pelc 1986, Schad et al 1992, Janke et al 2004, 
Doran et  al 2005, Baldwin et  al 2007, Baldwin et  al 2009). The GNL-induced distortion 
has substantial impact on applications demanding high geometric accuracy, such as radiation 
therapy planning (Chen et al 2006, Huang et al 2016), apparent diffusion coefficient map-
ping (Tan et al 2013), and longitudinal studies of neurodegenerative diseases (Han et al 2006, 
Jovicich et al 2006, Gunter et al 2009). If the GNL fields are a priori known, their effects 
may be retrospectively corrected in image domain after MRI reconstruction (Glover and Pelc 
1986), as conventionally implemented on commercial MR systems. Alternatively, the effect 
of GNL can be prospectively accounted for during, rather than after, image reconstruction, 
and therefore yield images that are compensated for GNL distortion without the need for 
interpolative post-processing (Tao et al 2015a, 2015b, 2016). Successful implementation of 
any gradient nonlinearity correction method relies on an accurate characterization of the GNL 
fields for an MR gradient system.

Conventionally, the GNL fields of a gradient system are characterized based on a param-
eterization of magnetic gradient field using spherical harmonic polynomial expansion (Glover 
and Pelc 1986, Janke et al 2004, Doran et al 2005). Given a particular gradient hardware 
design, electromagnetic (EM) simulation is performed to determine the coefficients of 
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spherical harmonic polynomials. These coefficients are assumed to be applicable to all scan-
ners built with the same gradient design, i.e. manufacturing variation is typically neglected. 
The order of spherical harmonic polynomials used for GNL correction varies among MR 
manufacturers and system models. Some whole-body MR systems utilize model coefficients 
up to the 5th order, as done on many General Electric (GE)’s systems (Glover and Pelc 1986).

Conventional whole-body MR gradient systems usually apply gradient coil windings sym-
metrically along each of the physical X, Y and Z gradients. Therefore, only model coeffi-
cients of odd-orders are non-negligible and required for distortion correction. Alternatively, 
phantom-based calibration methods have also been described to extract GNL information 
from MR images acquired on fiducial phantoms based on various mathematical models, such 
as spherical harmonic polynomial model, spline model, and polynomial model (Wang et al 
2004, Doran et al 2005, Hwang et al 2012a, 2012b, Trzasko et al 2015, Huang et al 2016). 
Such methods allow the calibration of system specific GNL distortion fields.

Recently, a compact, asymmetric MR gradient system for brain imaging has been devel-
oped (Lee et al 2015). Due to the 42 cm inner diameter of the gradient coil, it is also capable of 
scanning extremities and infants. This system has a 26 cm diameter spherical volume (DSV) 
for imaging, and is capable of producing a gradient amplitude and slew rate of 80 mT m−1 and 
700 T/m/s using a standard 1 megavolt-amp (MVA) per axis gradient driver due to the reduced 
coil inductance and resistance, with substantially reduced risk of PNS due to its compact 
spatial extent of the gradient coils (Lee et al 2015). In comparison to conventional whole-
body gradient systems, the transverse gradients (i.e. physical X and Y) of this system employ 
gradient coil windings asymmetrically along the longitudinal direction (Roemer 1993). Such 
a design facilitates patient access by shifting the imaging volume towards the patient end of 
the gradient coil. The design and construction of this compact asymmetric gradient system 
was detailed in a previous work (Lee et al 2015). However, due to the asymmetric design, 
this compact gradient system exhibits more complex GNL fields which require both odd- and 
even- order terms. Also, since the head fills nearly the entire field of view higher-order (i.e. 
N  >  5) spherical harmonic polynomial models are needed for accurate characterization and 
calibration.

In this work, the GNL fields of this compact asymmetric gradient system over the entire 
26 cm DSV are characterized using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
phantom (Gunter et al 2009) and an iterative model fitting procedure (Trzasko et al 2015). 
We demonstrate that the GNL-induced image geometric distortion can be modeled using up 
to 10th order spherical harmonic polynomial terms including both even- and odd-order terms. 
The GNL information obtained through this calibration is compatible with the framework 
utilized in on-system GNL correction, and can also be used as an independent validation for 
the vendor-provided coefficients obtained from EM simulation.

2. Materials and methods

2.1. Fiducial phantom

The GNL of the gradient fields were characterized using the ADNI phantom (figure 1), which 
is developed as a tool for evaluating image geometric distortion in the multi-site, multi-vendor 
ADNI project involving more than 58 sites (Jack et al 2008, Gunter et al 2009). The ADNI 
phantom is a 20 cm shell containing 160 spherical fiducial markers filled with a copper sul-
fate solution, a large 6.0 cm diameter signal-to-noise ratio (SNR) evaluation sphere in the 
center of the phantom, as well as two 3.0 cm diameter contrast-to-noise ratio (CNR) evalua-
tion spheres. All fiducial markers have a diameter of 1.0 (158/160) or 1.5 cm (2/160) and are 
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located at known relative positions in the phantom shell. Associated software tools are avail-
able to track the positions of the fiducials in the phantom (Gunter et al 2009). The fiducial 
tracking software is orientation insensitive. A local coordinate system is first established by 
locating the large SNR sphere and the two 1.5 cm diameter fiducials in the phantom. It then 
tracks the 1.0 cm fiducials by searching in the neighborhood of their expected locations based 
on phantom design using a template-based cross-correlation method. The ADNI phantom and 
fiducial tracking tool has been tested in the ADNI project and has demonstrated accuracy, 
reproducibility, and stability against image distortion of various sources, as detailed by Gunter 
et al (2009)

2.2. Data acquisition

The ADNI phantom was scanned with a single-channel transmit/receive (T/R) birdcage coil 
using a 3D inversion-recovery fast spoiled gradient echo (IR-FSPGR) acquisition (Bydder 
and Young 1985, Edelman et al 2009) (readout direction  =  superior/inferior (S/I); in-plane 
phase encoding direction  =  anterior/posterior (A/P); slab encoding direction  =  right/left 
(R/L); matrix  =  256  ×  256; in-plane field-of-view (FOV)  =  27  ×  27 cm2; in-plane resolu-
tion  =  1.055 mm; number of slices (i.e. partitions)  =  196; slice thickness  =  1.3 mm; TR/TI/
TE  =  3.5/400/1.5 ms; flip angle  =  11°). The IR-FSPGR sequence was adopted in this work 
following the recommendation of the ADNI group. In our experience, an FSPGR sequence 
can also be used and provide similar performance (Gunter et al 2009). A readout bandwidth 
(BW) of  ±125 kHz was used to minimize the effect of off-resonance (readout gradient ampl-
itude  =  22 mT m−1). To cover the entire 26 cm DSV of this gradient system of interest, the 
20 cm-diameter ADNI phantom was scanned at gradient isocenter, and at  ±3 cm offsets in the 
R/L, A/P and S/I directions along the gradient axes after manually shifting the phantom. To 
facilitate the experimental setup, the approximate positions of the displaced phantoms were 
confirmed using three-plane localizer images. Note that the exact positions of the phantom and 
fiducials were to be extracted from the acquired MR images, as described later in section 2.4, 
and the manual shifting of the phantom was to ensure the entire 26 cm DSV was covered. To 
examine the effect of off-resonance, data acquisition was repeated while the phantom was in 

Figure 1. The ADNI phantom used in this work. The phantom is a 20 cm spherical shell 
that has 160 spherical fiducials (1.0 cm or 1.5 cm in diameters) with known positions.
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the same position using the identical acquisition protocols, but with reversed readout gradient 
polarity. The built-in GNL correction on the scanner was disabled during these acquisitions.

The ADNI phantom was further scanned on the compact asymmetric gradient system using 
a fast spoiled gradient echo (FSPGR) sequence (BW  =  ±62.5 kHz; readout gradient ampl-
itude  =  11 mT m−1; readout direction  =  superior/inferior (S/I); in-plane phase encoding direc-
tion  =  anterior/posterior (A/P); slab encoding direction  =  right/left (R/L); matrix  =  256  ×  256; 
in-plane field-of-view (FOV)  =  27  ×  27 cm2; in-plane resolution  =  1.055 mm; number of 
slices (i.e. partitions)  =  252; slice thickness  =  1.0 mm; TR/TE  =  3.7/1.5 ms; flip angle  =  11°) 
using the single-channel T/R coil.

A healthy human subject was also scanned in the asymmetric gradient system under 
an IRB-approved protocol to demonstrate the effect of GNL correction, as described in 
later sections. Brain scan data were acquired with a 32-channel, receive-only brain coil 
(Nova Medical Inc., Wilmington MA, USA) using a 3D CUBE T2 FLAIR acquisition 
(Kallmes et  al 2001, Chagla et  al 2008) (readout direction  =  superior/inferior (S/I); in-
plane phase encoding direction  =  anterior/posterior (A/P); slab encoding direction  =  right/
left (R/L); matrix  =  256  ×  224; in-plane FOV  =  25.6  ×  24.3 cm2; number of slices (i.e. 
partitions)  =  128; slice thickness  =  1.4 mm; TR/TE  =  7600/111 ms; BW  =  ±41.67 kHz; 
echo train length (ETL)  =  180; flip angle  =  90°). The raw data were retained for offline 
processing.

2.3. Iterative GNL calibration procedure

The distortion field due to GNL for the k-axis (k  =  X, Y or Z) gradient coil, ( )→d xk , can be mod-
eled using a spherical harmonic polynomial model as shown in (1):

( ) ( ) ( ( ( ))) [ ( ( )) ( ( ))]→ → → → →∑ ∑ θ φ φ= +
= =

d x r x P x A m x B m xcos cos sink
n

N

m

n
n

nm nm
k

nm
k

0 0
 (1)

where →x is the physical position within the imaging volume, ( )→r x , ( )→θ x , ( )→φ x  denote the polar 
coordinates of position →x, N is the order of spherical harmonic polynomial model, Anm

k  and Bnm
k  

represent coefficients of the spherical harmonic polynomial model terms of order n ( ⩽ ⩽n N0 ) 
and degree m ( ⩽ ⩽m n0 ) for the k-axis gradient coil. ( )⋅Pnm  denotes the associated Legendre 
polynomial for the model terms with order n and degree m. Denoting S as the total number of 
model coefficients used in modeling of each gradient coil (including both Anm

k  and Bnm
k ), the 

GNL fields for the X, Y and Z gradient coils can be characterized using an S by 3 matrix C with 
each column of C denoting the model coefficients of the X, Y or Z gradient coil. The model 
coefficient C summarizes the distortion fields shown in (1) and can then be used for GNL 
correction. Define x as the original 3D MR image data set with GNL-induced distortion (i.e. 
before any GNL correction), and further define { }Γ x C,  as a function correcting the distortion 
in the image set x using model coefficient C (i.e. the distortion fields C represents). When x 
represents an image set of a fiducial phantom, such as the ADNI phantom used in this work, 
the fiducial positions in this image set can be extracted using a function { }Λ x . Hence, the fidu-
cial positions estimated from the images after GNL correction using model coefficients C can 
be expressed as ( ) { { }}Π = Λ ΓC x C, , where ( )Π C  is a T by 3 matrix denoting the 3D posi-
tions of the T fiducials, and is a function of model coefficient C (i.e. the distortion fields). The 
residual GNL distortion after correction using C can be summarized by the mean-square-error 
(MSE) between the estimated fiducial positions ( )Π C  and the true fiducial positions Π0. The 
optimal model coefficients, �C, can be found by solving the following nonlinear optimization 
problem (Trzasko et al 2015):
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[ ] { ( )} { { { }} }R R Π= = Λ Γ −∈ ∈�C C x Carg min MSE arg min ,C C 0 F
2 (2)

where ⋅ F denotes the Frobenius norm of a matrix. Equation  (2) explicitly estimates the 
model coefficients that minimize the MSE between the true fiducial positions and that esti-
mated from corrected image dataset. As shown by Trzasko et al (2015), (local) minimizers 
of this problem can be efficiently determined using linearized Gauss–Newton iteration. This 
optimization solver can be initialized either using zero-matrix (assuming no a priori informa-
tion about model coefficients) or using the model coefficients obtained from EM simulation.

2.4. Data processing

All data processing was performed in Matlab environment (The MathWorks, Inc., Natick MA) 
on a stand-alone computer with a dual 8-core 2.6 GHz CPU and a 128 GB of memory. The 
ADNI phantom used in this work has 160 fiducials, hence T  =  160. The software tool origi-
nally associated with the ADNI phantom (Gunter et al 2009) was used to track the fiducial 
positions, which serves as the function { }Λ ⋅ . The GNL correction function { }Γ ⋅  was imple-
mented using the conventional GNL correction method based on image domain cubic spline 
interpolation (Glover and Pelc 1986). A rigid body transformation fitting was performed to 
match the relative fiducial positions from the true phantom design to the fiducial positions 
measured in each image data set. This rigid body transformation accounting for phantom rota-
tion and shift was then applied to the designed relative fiducial positions (Πd) to yield the true 
fiducial positions (Π0). This process can be expressed as Π = ΠΠH  dC0 { }( )  and is performed 
within each iteration when solving (2) with the rigid body transformation (H) obtained by 
minimizing the difference between the relative fiducial positions a priori known from phan-
tom design (Πd) and the fiducial positions measured in the corrected image data set ( ( )Π C ). 
The calibration procedure in (2) was initialized with the model coefficients obtained from 
EM simulation. Note that the GNL coefficients C in (2) were solved iteratively (Trzasko et al 
2015). In the ith iteration, the fiducial positions ( ( ) { { }}Π = Λ Γ− −C x C,i i1 1 ) were tracked 
from the image after correction using the previous model coefficients ( { }Γ −x C, i 1 ). The 
residual distortion fields were then estimated by comparing ( ) { { }}Π = Λ Γ− −C x C,i i1 1  and 

{ }( )Π Π= Π −H dC0 i 1 , and were used to refine the GNL model coefficients in the current itera-
tion (Ci). As iteration progresses, the residual distortion gradually decreases, and the accuracy 
of the fiducial tracking process ( { }Λ ⋅ ) as well as that of the rigid body transformation fitting 
( ( )ΠH C ) improves. All the image data sets acquired at the isocenter and various offsets were 
used in the calibration procedure. If not otherwise stated, images acquired with normal read-
out gradient polarity were used. The spherical harmonic polynomial of the nth order has a total 
of 2n  +  1 model coefficients corresponding to the terms of different degrees. The calibration 
procedure can be performed using all the available terms at each order, or using a subset of 
these. In this work, only one degree at each order was used for each gradient in the calibration 
procedure (i.e. An

x
,1 for X gradient, Bn

y
,1 for Y gradient, An

z
,0 for Z gradient). This configuration 

is consistent with the standard practice on GE’s systems and is incorporated in their gradient 
coil design (Glover and Pelc 1986, Turner 1986). On our gradient system, this configuration 
is justifiable because although its X and Y gradient coils had an asymmetric coil pattern in the 
longitudinal direction, their design still incorporated the m  =  1 harmonic dependence in the 
azimuthal direction (Turner 1986).

To test the effects of high-order spherical harmonic polynomial terms (N  >  5), the itera-
tive calibration procedure (2) was performed by incrementally increasing the model order N 
from 5 to 10 including both even- and odd-order terms. For each parameterization, the fitting 
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procedure was executed for 10 iterations, which was previously demonstrated sufficient for 
achieving convergence (Trzasko et al 2015). The calibrated coefficients of each case were 
then used to correct the GNL distortion using the standard method based on image domain 
interpolation, and the residual root-mean-squared-error (RMSE) of each case was then deter-
mined by comparing the estimated fiducial positions in the corrected images with the true 
fiducial positions. The RMSE of images corrected using coefficients (N  =  10) obtained from 
EM simulation was also determined. The effect of even-order terms was tested by performing 
the calibration procedure using odd-order terms only, and calculating the RMSE from cor-
rected images. To examine the effect of off-resonance on model coefficient estimation, the 
calibration procedure for the N  =  10 case was repeated using the images acquired with read-
out gradient polarity reversed. The obtained coefficients were used to correct the same images 
used in previous analysis. The fiducial positions estimated from the corrected images were 
then compared with that estimated from images after the previous 10th order correction using 
coefficients calibrated from images acquired with normal readout gradient polarity.

As an independent test, the ADNI image dataset acquired with FSPGR sequence was 
respectively corrected using the coefficients obtained from the proposed calibration process, 
as well as that obtained from the EM simulation (both up to 10th-order including odd and even 
order terms), and the residual rooted mean square errors (RMSE) of fiducial positions after 
both corrections were then calculated.

The calibrated coefficients at various orders (N  =  5–10) were also utilized to correct the 
GNL distortion in the 3D CUBE T2 FLAIR data set using an integrated GNL correction 
method based on type-I non-uniform fast Fourier transform (NUFFT) (Tao et al 2016). For 
comparison, the simulation based model coefficients (N  =  10) were also used for correction. 
The NUFFT operator was implemented with a 5-point Kaiser–Bessel interpolation kernel and 
a 1.25 times over-sampled FFT operator (Fessler and Sutton 2003, Beatty et al 2005).

3. Results

Among the 160 fiducials in the ADNI phantom, 159 fiducials were successfully tracked in 
each data set corresponding to a single phantom positioning. One fiducial was missing due 
to its low signal intensity, potentially caused by solution leakage, which is a documented 
issue in the ADNI phantom fleet (Gunter et al 2009). Consequently, a total of 1113 fiducials 
from seven data sets corresponding to seven phantom positioning were used in the iterative 
calibration procedure. The RMSE values in images corrected using calibrated coefficients of 
various orders including both odd- and even-order terms are shown in figure 2. As model order 
increases, the RMSE values gradually decreases and stabilizes after N  =  9. Figure 2 shows 
that the use of higher-order terms up to 10th order decreases the RMSE from 0.70 mm (5th 
order) to 0.36 mm. As a comparison, the RMSE from images corrected with EM simulation 
coefficients (up to 10th order) is determined to be 0.96 mm. Figure 2 also shows the RMSE 
values of images corrected using odd-order terms only. Comparison between RMSE values 
of using odd/even-order terms and using only odd-terms demonstrates the importance of the 
even-order terms in GNL correction for this asymmetric gradient system. Note that the num-
ber of polynomial basis used in the N  =  9 case with odd-order terms only is the same as that 
used in the N  =  5 case with both even and odd-order terms, but the RMSE was 1.10 versus 
0.70 mm, respectively. This demonstrates that the RMSE improvement is explained by the 
even-order terms used in the GNL calibration and correction, rather than solely the number 
of polynomial basis used. The difference between fiducial positions estimated from corrected 
images using the coefficients calibrated from images acquired using normal and reversed 
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readout gradient polarity is 0.08  ±  0.05 mm (mean value  ±  standard deviation). It shows that 
the influence of off-resonance on the calibration procedure was effectively suppressed by the 
high BW (±125 kHz). Figure 3 shows examples of images acquired at the superior end of the 
26 cm DSV before and after correction using the calibrated 10th order coefficients. The image 
distortion apparent at the superior end of the phantom is successfully corrected.

Figure 4 shows residual displacement of each fiducial after correction using the 10th order 
coefficients obtained from EM simulation (a) and from calibration based on the described 
procedure (b), respectively. Each plot in the 3  ×  3 panel of figure 4 shows the displacement 
of each fiducial from its true positions along the right/left (ΔRL), anterior/posterior (ΔAP) or 
superior/inferior (ΔSI) gradient axis in the corrected images, as a function of the true position 
of each fiducial along each gradient axis (RL, AP, SI). Comparison between figures 4(a) and 
(b) shows that the residual displacements after correction using the EM simulation coefficients 
are reduced using the calibrated coefficients. The residual distortion fields in figure 4(a) for 
simulation coefficients show linear spatial dependence in the ΔAP versus AP panel as well 
as ΔSI versus SI panel, which suggests a potential for improvement of image geometric acc-
uracy by recalibrating the AP and SI gradients. Gradient calibration is determined during field 
service, and cannot be accounted for using the EM simulation based coefficients. However, 
this first-order spatial distortion is captured in the proposed calibration procedure, which leads 
to reduced distortion field shown in figure 4(b). For reference, the calibrated first-order coef-
ficients were combined with the EM simulation coefficients to yield a third set of coefficients 
(i.e. instead of using the simulation-based coefficients alone) and used for GNL correction, 
which yielded a RMSE of 0.40 mm, about 11% higher than that of the proposed calibrated 
10th order coefficients (0.36 mm).

As an independent test, the ADNI phantom images acquired using a different FSPGR 
sequence were corrected using the model coefficient obtained from the proposed GNL cali-
bration as well as the EM simulation coefficients (both up to 10th order with odd and even 
terms). The residual RMSE measured from the corrected images are 0.36 mm (using coef-
ficients from the proposed calibration), 0.96 mm (using coefficients from EM simulation) and 
0.41 mm (the first-order coefficients from the proposed calibration combined with EM simu-
lation coefficients), which demonstrate the improved image geometric accuracy using coef-
ficients obtained from the proposed calibration.

Figure 2. The residual root-mean-squared error (RMSE) after correction using the 
proposed calibrated spherical harmonic polynomial model coefficients of various 
model orders including both odd- and even-order terms (solid line), or including odd-
order terms only (circles).
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Examples of the 3D CUBE T2 FLAIR images after correction using the calibrated coef-
ficients of various orders are shown in figure 5. The difference images between two subse-
quent model orders (i.e. N  =  5 versus 7, N  =  7 versus 9, N  =  9 versus 10) are also shown, 
which highlight the relative contribution of high-order terms as model order N increases. The 
displayed window width of the difference images is reduced by 10 times to emphasize the 
difference and increase contrast. Including higher-order terms mainly impacts the geomet-
ric accuracy of the periphery of imaging volume. Further increasing model order from 9 to 
10 provides marginal improvement, which is consistent with the RMSE values in figure 2. 
Figure 6 compares the images corrected using up to 10th order coefficients obtained from EM 
simulation and proposed calibration, along with the difference image. The first-order coef-
ficients obtained from proposed iterative calibration were combined with the EM simulation 
coefficients and used for correction. A stronger difference can be observed at the periphery of 
the brain.

4. Discussion

In this work, we characterized the GNL field of a compact asymmetric MR gradient system 
using an iterative GNL calibration procedure and the ADNI phantom. The GNL-induced image 

Figure 3. Examples of ADNI phantom images (FOV shifted from gradient isocenter by 
3 cm in the superior direction) before and after gradient nonlinearity correction using the 
calibrated model coefficients (spherical harmonic polynomial model N  =  10 including 
both even- and odd-order terms). The images corrected using model N  =  5 with odd-
order only are also shown, which demonstrates residual distortion at the phantom 
superior end in the coronal and sagittal planes (see zoom-in panels and arrows).
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geometric distortion presents a challenge for the compact asymmetric gradient system due to its 
more complex GNL fields, as compared to conventional whole-body MR gradients employing 
symmetric designs that typically require only 3rd and 5th order terms. Figure 2 shows that the 
GNL field of this new system requires spherical harmonic polynomials terms of higher order 
(up to N  =  10) including both odd- and even-order terms for accurate characterization. Based 

Figure 4. The residual displacement of phantom fiducials after correction using 
the spherical harmonic polynomial model coefficients (N  =  10) obtained from EM 
simulation (a) and proposed iterative calibration (b) along the three orthogonal gradient 
axes (right/left  =  R/L, anterior/posterior  =  A/P, superior/inferior  =  S/I). Each plot of 
the 3 by 3 panels represents the displacement of each fiducial from its true positions 
along one gradient axis (i.e. ΔRL, ΔAP, ΔSI), as a function of the true position of that 
fiducial (i.e. RL, AP, SI).

Figure 5. Examples of the 3D T2 FLAIR images after correction using the calibrated 
coefficients of various orders (N  =  5, 7, 9, 10), and the difference images between two 
subsequent fitting orders (i.e. N  =  5 versus 7, N  =  7 versus 9, N  =  9 versus 10). The 
displayed window width of the difference images is reduced by 10 times from that of 
the anatomical images to emphasize differences and to increase contrast.
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on the trends observed in figure 2, we hypothesize that increasing the modeling order beyond 
the order of 10 will contribute minimal additional improvements in terms of RMSE, while 
increasing the risk of over-fitting and introducing potential numerical instability in data fitting 
process. The RMSE value across the entire 26 cm DSV of this system is reduced to 0.36 mm 
by use of up to 10th order terms, which satisfies the quality control criteria used in the ADNI 
study (Gunter et al 2009). As reported in a previous work, the American College of Radiology 
(ACR) MR phantom images corrected using the calibrated coefficients have successfully 
passed the ACR phantom image quality control (QC) tests (Weavers et al 2015). On the other 
hand, the on-scanner GNL correction based on only 3rd and 5th order coefficients from EM 
simulation failed the ACR phantom QC test due to inadequate geometric accuracy. The effects 
of off-resonance on the calibration procedure were minimized by the use of high acquisition 
bandwidth (BW  =  ±125 kHz). The calibration procedure based on images acquired using 
readout gradient with normal or reversed polarity yielded equivalent GNL model coefficients. 
The mean difference in fiducial positions (0.08  ±  0.05 mm) estimated from images corrected 
using these two groups of coefficients were much smaller than the residual RMSE (0.36 mm).

The GNL information obtained from the calibration procedure can potentially benefit 
any MR application performed on this asymmetric gradient system. This is important in 
3D volumetric imaging requiring high geometric accuracy, such as the 3D MPRAGE used 
in longitudinal tracking of brain white/gray matter volume change during the progress of 
Alzheimer’s disease (Gunter et al 2009). Specifically, the proposed calibrated higher-order 
model in GNL correction is especially relevant in improving the image geometric accuracy 
around the periphery of brain volume where grey matter volume is measured. In this case, the 
small volume change along with disease progress is especially susceptible to unaccounted for 
spatially-dependent GNL distortion, as patient positioning may vary across multiple scans 
which can cause GNL distortion of various degrees and lead to measurement error on the level 
of disease-induced volume change.

The GNL model coefficients obtained in this work are compatible with the GNL correction 
framework utilized on commercial MR systems. They can be used as an independent verifica-
tion for model coefficients obtained from EM simulation. Since the calibration is performed 

Figure 6. Examples of the 3D T2 FLAIR images after correction using up to 10th 
order coefficients obtained from EM simulation and the proposed iterative calibration, 
as well as the difference image between the two. The displayed window width of 
the difference images is reduced by 10 times from that of the anatomical images to 
emphasize differences and to increase contrast.
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on a per-system basis, it can potentially identify system specific errors such as coil winding 
errors outside of manufacturing tolerances, etc (Janke et al 2004), or identify system imper-
fections that require a recalibration of the gradient, as shown in figure 4. Note that the EM 
simulation-based coefficients yields sub-optimal RMSE (0.40 mm) even after the first-order 
terms was accounted for when compared with the proposed iterative calibration procedure 
(RMSE  =  0.36 mm). This can be explained by the discrepancy between the ideal coil design 
assumed in the simulation and the actual coil position, caused by variation introduced in coil 
manufacturing. The calibration procedure used in this work was performed using a subset of 
the full spherical harmonic polynomial expansion, consistent with the standard practice on 
GE’s systems. It is possible to include the full expansion including all degrees terms in each 
order in the proposed calibration. However, a previous study has shown that the GNL cor-
rection accuracy in clinical applications is comparable across vendors using different model 
configurations (Gunter et al 2009). In practice, different MR acquisitions will be subject to 
various distortions in addition to GNL, such as those due to eddy current, concomitant field, 
and object-dependent susceptibility. The true benefit from the use of the additional degree 
terms in the presence of other distortion sources needs further investigation, which is beyond 
the scope of this work. Although including the higher-order terms (N  >  10), or terms of other 
degrees for each order can potentially further decrease RMSE, it could render the calibration 
process to be susceptible to over-fitting, while the standard configuration adopted here can 
reduce this effect.

5. Conclusion

We have demonstrated that it is feasible to calibrate the GNL field of a compact asymmetric 
MR gradient system using an iterative data fitting procedure based on the spherical harmonic 
polynomial model and the ADNI phantom. The image distortion is reduced using the cali-
brated GNL information up to the 10th order with both odd- and even-order terms. The dem-
onstrated method can be applied to characterize and improve the spatial encoding accuracy of 
other gradient coils with unconventional designs.
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